3.52 \(\int \frac{\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=145 \[ \frac{4 c^2 \cos (e+f x) \log (\sin (e+f x)+1)}{a f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}+\frac{2 c \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{a f \sqrt{a \sin (e+f x)+a}}+\frac{\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f \sqrt{a \sin (e+f x)+a}} \]

[Out]

(4*c^2*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(a*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (2*c*Cos[
e + f*x]*Sqrt[c - c*Sin[e + f*x]])/(a*f*Sqrt[a + a*Sin[e + f*x]]) + (Cos[e + f*x]*(c - c*Sin[e + f*x])^(3/2))/
(2*a*f*Sqrt[a + a*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.529118, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.132, Rules used = {2841, 2740, 2737, 2667, 31} \[ \frac{4 c^2 \cos (e+f x) \log (\sin (e+f x)+1)}{a f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}+\frac{2 c \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{a f \sqrt{a \sin (e+f x)+a}}+\frac{\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f \sqrt{a \sin (e+f x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*(c - c*Sin[e + f*x])^(3/2))/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

(4*c^2*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(a*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (2*c*Cos[
e + f*x]*Sqrt[c - c*Sin[e + f*x]])/(a*f*Sqrt[a + a*Sin[e + f*x]]) + (Cos[e + f*x]*(c - c*Sin[e + f*x])^(3/2))/
(2*a*f*Sqrt[a + a*Sin[e + f*x]])

Rule 2841

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rule 2740

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Sim
p[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(m + n)), x] + Dist[(a*(2*m - 1))/(m
 + n), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && E
qQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m])
 &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rule 2737

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(
a*c*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2}} \, dx &=\frac{\int \frac{(c-c \sin (e+f x))^{5/2}}{\sqrt{a+a \sin (e+f x)}} \, dx}{a c}\\ &=\frac{\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f \sqrt{a+a \sin (e+f x)}}+\frac{2 \int \frac{(c-c \sin (e+f x))^{3/2}}{\sqrt{a+a \sin (e+f x)}} \, dx}{a}\\ &=\frac{2 c \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{a f \sqrt{a+a \sin (e+f x)}}+\frac{\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f \sqrt{a+a \sin (e+f x)}}+\frac{(4 c) \int \frac{\sqrt{c-c \sin (e+f x)}}{\sqrt{a+a \sin (e+f x)}} \, dx}{a}\\ &=\frac{2 c \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{a f \sqrt{a+a \sin (e+f x)}}+\frac{\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f \sqrt{a+a \sin (e+f x)}}+\frac{\left (4 c^2 \cos (e+f x)\right ) \int \frac{\cos (e+f x)}{a+a \sin (e+f x)} \, dx}{\sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{2 c \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{a f \sqrt{a+a \sin (e+f x)}}+\frac{\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f \sqrt{a+a \sin (e+f x)}}+\frac{\left (4 c^2 \cos (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{a+x} \, dx,x,a \sin (e+f x)\right )}{a f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{4 c^2 \cos (e+f x) \log (1+\sin (e+f x))}{a f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}+\frac{2 c \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{a f \sqrt{a+a \sin (e+f x)}}+\frac{\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f \sqrt{a+a \sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 1.08957, size = 134, normalized size = 0.92 \[ \frac{c (\sin (e+f x)-1) \sqrt{c-c \sin (e+f x)} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^3 \left (12 \sin (e+f x)+\cos (2 (e+f x))-32 \log \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )\right )}{4 f (a (\sin (e+f x)+1))^{3/2} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*(c - c*Sin[e + f*x])^(3/2))/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

(c*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3*(-1 + Sin[e + f*x])*(Cos[2*(e + f*x)] - 32*Log[Cos[(e + f*x)/2] + S
in[(e + f*x)/2]] + 12*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(4*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*(a*
(1 + Sin[e + f*x]))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.183, size = 172, normalized size = 1.2 \begin{align*} -{\frac{\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) + \left ( \cos \left ( fx+e \right ) \right ) ^{2}-2\,\sin \left ( fx+e \right ) +\cos \left ( fx+e \right ) -2}{2\,f \left ( \sin \left ( fx+e \right ) \cos \left ( fx+e \right ) - \left ( \cos \left ( fx+e \right ) \right ) ^{2}-2\,\sin \left ( fx+e \right ) -\cos \left ( fx+e \right ) +2 \right ) } \left ( \left ( \cos \left ( fx+e \right ) \right ) ^{2}+6\,\sin \left ( fx+e \right ) -16\,\ln \left ({\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +8\,\ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -1 \right ) \left ( -c \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{{\frac{3}{2}}} \left ( a \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2),x)

[Out]

-1/2/f*(cos(f*x+e)^2+6*sin(f*x+e)-16*ln((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+8*ln(2/(cos(f*x+e)+1))-1)*(-c*(-
1+sin(f*x+e)))^(3/2)*(sin(f*x+e)*cos(f*x+e)+cos(f*x+e)^2-2*sin(f*x+e)+cos(f*x+e)-2)/(sin(f*x+e)*cos(f*x+e)-cos
(f*x+e)^2-2*sin(f*x+e)-cos(f*x+e)+2)/(a*(1+sin(f*x+e)))^(3/2)

________________________________________________________________________________________

Maxima [B]  time = 1.88745, size = 1139, normalized size = 7.86 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

-1/2*(16*c^(3/2)*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1)/a^(3/2) - 8*c^(3/2)*log(sin(f*x + e)^2/(cos(f*x + e)
 + 1)^2 + 1)/a^(3/2) - (10*c^(3/2) + 13*c^(3/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 25*c^(3/2)*sin(f*x + e)^2/(c
os(f*x + e) + 1)^2 + 20*c^(3/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 15*c^(3/2)*sin(f*x + e)^4/(cos(f*x + e)
+ 1)^4 + 9*c^(3/2)*sin(f*x + e)^5/(cos(f*x + e) + 1)^5)/(a^(3/2) + 2*a^(3/2)*sin(f*x + e)/(cos(f*x + e) + 1) +
 3*a^(3/2)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 4*a^(3/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 3*a^(3/2)*sin
(f*x + e)^4/(cos(f*x + e) + 1)^4 + 2*a^(3/2)*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 + a^(3/2)*sin(f*x + e)^6/(cos
(f*x + e) + 1)^6) + (10*c^(3/2) + 11*c^(3/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 15*c^(3/2)*sin(f*x + e)^2/(cos(
f*x + e) + 1)^2 + 20*c^(3/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*c^(3/2)*sin(f*x + e)^4/(cos(f*x + e) + 1)
^4 + 7*c^(3/2)*sin(f*x + e)^5/(cos(f*x + e) + 1)^5)/(a^(3/2) + 2*a^(3/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 3*a
^(3/2)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 4*a^(3/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 3*a^(3/2)*sin(f*x
 + e)^4/(cos(f*x + e) + 1)^4 + 2*a^(3/2)*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 + a^(3/2)*sin(f*x + e)^6/(cos(f*x
 + e) + 1)^6) - 2*(5*c^(3/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 5*c^(3/2)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 +
 8*c^(3/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*c^(3/2)*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 5*c^(3/2)*sin
(f*x + e)^5/(cos(f*x + e) + 1)^5)/(a^(3/2) + 2*a^(3/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 3*a^(3/2)*sin(f*x + e
)^2/(cos(f*x + e) + 1)^2 + 4*a^(3/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 3*a^(3/2)*sin(f*x + e)^4/(cos(f*x +
 e) + 1)^4 + 2*a^(3/2)*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 + a^(3/2)*sin(f*x + e)^6/(cos(f*x + e) + 1)^6))/f

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (c \cos \left (f x + e\right )^{2} \sin \left (f x + e\right ) - c \cos \left (f x + e\right )^{2}\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{a^{2} \cos \left (f x + e\right )^{2} - 2 \, a^{2} \sin \left (f x + e\right ) - 2 \, a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral((c*cos(f*x + e)^2*sin(f*x + e) - c*cos(f*x + e)^2)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)
/(a^2*cos(f*x + e)^2 - 2*a^2*sin(f*x + e) - 2*a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(c-c*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{3}{2}} \cos \left (f x + e\right )^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((-c*sin(f*x + e) + c)^(3/2)*cos(f*x + e)^2/(a*sin(f*x + e) + a)^(3/2), x)